

### **GENERAL DESCRIPTION**

#### **FEATURES**

This advanced high voltage MOSFET is designed to withstand high energy in the avalanche mode and switch efficiently. This hew high energy device also offers a drain-to-source diode with fast recovery time. Designed for high voltage, high speed switching applications such as power supplies, converters, power motor controls and bridge circuits. ◆

- ♦ SJ MOS
  - Higher Current Rating
- ◆ Lower Rds(on)
- ◆ Lower Capacitances
  - Lower Total Gate Charge

#### PIN CONFIGURATION

#### **SYMBOL**





## **ABSOLUTE MAXIMUM RATINGS**

| Rating                                                                         | Symbol                            | Value      | Unit                   |  |  |
|--------------------------------------------------------------------------------|-----------------------------------|------------|------------------------|--|--|
| Drain to Current — Continuous                                                  | I <sub>D(1)</sub>                 | 15         |                        |  |  |
| <ul><li>Pulsed</li></ul>                                                       | I <sub>DM</sub>                   | 45         | Α                      |  |  |
| Gate-to-Source Voltage — Continue                                              | V <sub>GS</sub>                   | ±20        | V                      |  |  |
| Total Power Dissipation TO-251/TO-252/TO-251S                                  |                                   | 106.8      | W                      |  |  |
| TO-220                                                                         |                                   | 179        |                        |  |  |
| TO-220FP                                                                       |                                   | 38         |                        |  |  |
| Derate above 25°C TO-251/TO-252/ TO-251S                                       | ⊢ P <sub>D</sub>                  | 0.85       | <b>W</b> /°C           |  |  |
| TO-220                                                                         |                                   | 1.43       |                        |  |  |
| TO-220FP                                                                       |                                   | 0.3        |                        |  |  |
| Junction and Storage Temperature Range                                         | T <sub>J</sub> , T <sub>STG</sub> | -55 to 150 | $^{\circ}\!\mathbb{C}$ |  |  |
| Single Pulse Drain-to-Source Avalanche Energy $-$ T $_{J}$ = 25 $^{\circ}$ C   |                                   |            |                        |  |  |
| $(V_{DD} = 100V, V_{GS} = 10V, I_L = 7.9A, L = 10mH)$                          | E <sub>AS</sub>                   | 312        | mJ                     |  |  |
| Thermal Resistance — Junction to Case TO-251/TO-252/ TO-251S                   | θ <sub>JC</sub>                   | 1.17       |                        |  |  |
| TO-220                                                                         |                                   | 0.7        |                        |  |  |
| TO-220FP                                                                       |                                   | 3.3        | °C/W                   |  |  |
| <ul><li>Junction to Ambient TO-251/TO-252/ TO-251S</li></ul>                   | $\theta_{JA}$                     | 100        |                        |  |  |
| TO-220/ TO-220FP                                                               |                                   | 62.5       |                        |  |  |
| Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds | T∟                                | 260        | $^{\circ}\!\mathbb{C}$ |  |  |

(1)Drain current limited by maximum junction temperature (TO-220)





# **ORDERING INFORMATION**

| Part Number  | TOP MARK  | Part Number | Packing Mthod | Note |
|--------------|-----------|-------------|---------------|------|
| GWM15S65YE   | GWM15S65Y | TO-251      | Tube          |      |
| GWM15S65YF   | GWM15S65Y | TO-251S     | Tape and Reel |      |
| GWM15S65YD   | GWM15S65Y | TO-252      | Tube          |      |
| GWM15S65YDTR | GWM15S65Y | TO-252      | Tape and Reel |      |
| GWM15S65YY   | GWM15S65Y | TO-220      | Tube          |      |
| GWM15S65YX   | GWM15S65Y | TO-220FP    | Tube          |      |

Note1: Halogen Free and PB Free Product

## **ELECTRICAL CHARACTERISTICS**

Unless otherwise specified,  $T_J = 25^{\circ}C$ 

|                                                                                      |                                                 |                      | GWM15S65Y |      |     |       |
|--------------------------------------------------------------------------------------|-------------------------------------------------|----------------------|-----------|------|-----|-------|
| Characteristic                                                                       |                                                 | Symbol               | Min       | Тур  | Max | Units |
| Drain-Source Breakdown Voltage<br>(V <sub>GS</sub> = 0V, I <sub>D</sub> = 250 µA)    |                                                 | V <sub>(BR)DSS</sub> | 650       |      |     | V     |
| Drain-Source Leakage Current (V <sub>DS</sub> =650V, V <sub>GS</sub> = 0V)           |                                                 | I <sub>DSS</sub>     |           |      | 1   | uA    |
| Gate-Source Leakage Current-Forward (V <sub>gsf</sub> = 20V, V <sub>DS</sub> = 0V)   |                                                 | I <sub>GSSF</sub>    |           |      | 100 | nA    |
| Gate-Source Leakage Current-Reverse (V <sub>gsr</sub> = - 20V, V <sub>DS</sub> = 0V) |                                                 | I <sub>GSSR</sub>    |           |      | 100 | nA    |
| Gate Threshold Voltage (V <sub>DS</sub> = V <sub>GS</sub> , I <sub>D</sub> = 250μA)  |                                                 | V <sub>GS(th)</sub>  | 2         |      | 4   | V     |
| Static Drain-Source On-Resistance (V <sub>GS</sub> = 10V, I <sub>D</sub> = 5A) *     |                                                 | R <sub>DS(on)</sub>  |           |      | 330 | mΩ    |
| Input Capacitance Output Capacitance                                                 | $(V_{DS} = 100V, V_{GS} = 0 V,$<br>f = 1.0 MHz) | C <sub>iss</sub>     |           | 698  |     | pF    |
|                                                                                      |                                                 | Coss                 |           | 36   |     | pF    |
|                                                                                      |                                                 | C <sub>rss</sub>     |           | 28   |     | pF    |
| Output Capacitance                                                                   | $(V_{DS} = 400V, V_{GS} = 0 V,$<br>f = 1.0 MHz) | C <sub>iss</sub>     |           | 695  |     | pF    |
| Reverse Transfer Capacitance                                                         |                                                 | Coss                 |           | 23   |     | pF    |
| Treverse Transier Capacitance                                                        |                                                 | Crss                 |           | 11   |     | pF    |
| Turn-On Delay Time                                                                   |                                                 | $t_{d(on)}$          |           | 12   |     | ns    |
| Rise Time                                                                            | $(V_{DD} = 325V, I_D = 15A,$                    | t <sub>r</sub>       |           | 28   |     | ns    |
| Turn-Off Delay Time                                                                  | $V_{GS} = 10V, R_G = 9.1\Omega) *$              | $t_{d(off)}$         |           | 30   |     | ns    |
| Fall Time                                                                            |                                                 | t <sub>f</sub>       |           | 7    |     | ns    |
| Total Gate Charge                                                                    | $(V_{DS} = 520V, I_{D} = 15A,$                  | Qg                   |           | 16.4 |     | nC    |
| Gate-Source Charge                                                                   | $V_{GS} = 520V, I_D = 15A,$ $V_{GS} = 10V)^*$   | $Q_{gs}$             |           | 6    |     | nC    |
| Gate-Drain Charge                                                                    | <b>v</b> GS - 10 <b>v</b> )                     | $Q_{gd}$             |           | 4.3  |     | nC    |
| SOURCE-DRAIN DIODE CHARA                                                             | CTERISTICS                                      |                      |           |      |     |       |
| Forward On-Voltage(1)                                                                | (I <sub>2</sub> = 15A                           | V <sub>SD</sub>      |           |      | 1.5 | V     |
| Forward Turn-On Time                                                                 | $(I_S = 15A, d_{IS}/d_t = 100A/\mu s)$          | t <sub>on</sub>      |           | **   |     | ns    |
| Reverse Recovery Time                                                                | u <sub>18</sub> /u <sub>t</sub> = 100/1/μ3)     | t <sub>rr</sub>      |           | 308  |     | ns    |

<sup>\*</sup> Pulse Test: Pulse Width  $\leq$ 300 $\mu$ s, Duty Cycle  $\leq$ 2%

<sup>\*\*</sup> Negligible, Dominated by circuit inductance



## TYPICAL ELECTRICAL CHARACTERISTICS



Fig 1. On-Resistance Variation with vs. Temperature



Fig.2 Breakdown Voltage Variation vs. Temperature



Fig 3. Threshold Voltage vs. Temperature



Fig 4. Typical Output Characteristics





Fig 5. Typical Gate Charge Vs. Gate-to-Source Voltage



Fig 6. Typical Capacitance Vs. Drain-to-Source Voltage



Fig 7. Typical Transfer Characteristics